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Martin Greiner* Jens Giesemanit, and Peter Lipa®
Unstitut fir Theoretische Physik, Technische Univelsifa-01062 Dresden, Germany
Znstitut fir Theoretische Physik, Justus Liebig Universi-35392 GieRen, Germany
3Institut fir Hochenergiephysik der €erreichischen Akademie der Wissenschaften, Nikolsdorfergasse 18, A-1050 Vienna, Austria
“Max-Planck-Institut fu Physik komplexer Systeme, D-01187 Dresden, Germany
(Received 9 May 1997

Due to the underlying hierarchical structure, spatial correlation functions calculated from multiplicative
cascade models are not translationally invariant. A scheme is presented that restores translational invariance by
averaging over the experimentally unknown spatial location of cascade realizations with respect to the obser-
vation window. The impact of this scheme on multiplier distributions for the energy dissipation field in fully
developed turbulence is analyzed; only the experimental multiplier distribution is found to be invariant under
a wide range of scale$S1063-651X97)14510-X]

PACS numbgs): 47.27-i, 05.40+j, 02.50.Sk

[. INTRODUCTION vation window” always contains one full cascade, which
implies that the observer is able to “trigger” a large-eddy
Fully developed turbulence remains a challenging puzzlestructure and record its intrinsic decay. The experimental
To our knowledge no analytic derivation of the intricate fluc- analysis of recorded time series, which are then interpreted
tuations in the velocity or energy dissipation field has beer®s spatial configurations of the energy dissipation field ac-
given from first principles, i.e., the Navier-Stokes equation,cording to Taylor's frozen hypothesis, does not employ such
although some recent approachi&kappear to be promising. @ trigger. In order to bring model simulations closer to ex-
Astonishingly, many features of experimental observationerimental measurement procedures, an averaging over the
are also found in simple heuristic models, which thus may b&/nknown position of the large scale structures with respect to
taken as a basis to develop a better phenomenological arfile observation window needs to be taken into account. Of
mathematical understanding of turbulence. Among theséourse, such an averaging scheme destroys the strict self-
models are, for example, a variety of multiplicative cascadéimilarity of the hierarchical cascade models. The question is
models(or weight-curdling mode)s[2-5], diffusion models then, how much? A proper investigation of this point is the
[6,7], the She-Leveque modg8], and approaches based on asubject of this paper.
Fokker-Planck equatiof]. The organization of the paper is as follows. In Sec. Il we
In this paper we concentrate on multiplicative cascaddriefly review how to calculate spatial correlation functions
models [4,5], which successfully capture many statistical and their wavelet transforms for multiplicative cascade pro-
features of time series obtained from measurements of theesses. A simple scheme to restore translational invariance in
energy dissipation field in fully developed turbulence. In par-the correlation functions and in their wavelet transforms is
ticular, the multifractal analyses, which emphasize the statisdiscussed in Sec. Ill. Basically it uses two independent
tics of local singularity strengths, give remarkable goodmodel configurations of equal lengths, joins them together,
agreement between model predictions and experimental dagild determines the spatial correlations from “observed”
(see, e.qg.[10] and [11] and references therginStandard configurations, which have the same length as each model
multifractal analyses, however, are based on the scalingonfiguration, but are shifted randomly inside the two adja-
properties of moment§.e., integrals over correlation func- cent model configurations. We also discuss the case of peri-
tions) and thus obscure information on the spatial correla0dic continuation. In Sec. IV we investigate the impact of
tions of the energy dissipation field. The latter contain athis scheme on the so-called multiplier distributions for two
plethora of additional information and allow us, in principle, SPecific cascade prescriptions. This is also discussed for a
to investigate the nature of turbulence on a deeper level. nonhierarchical breakup process and compared to the two
In two recent papergl2,13 the spatial correlation densi- Previous cases. We summarize the results in Sec. V and give
ties of a general class of multiplicative cascades, includingt short outlook.
the a« model[4] and thep model[5] have been calculated
apalytically with g_enerating function t.echniques. Due to the Il. SPATIAL CORRELATIONS IN RANDOM
h|efarch|qal organization of Fhe considered cascad.e quels, MULTIPLICATIVE PROCESSES
their spatial correlation functions turn out not to be invariant
under spatial translations. This is in clear contrast to experi- As a prototype for a random multiplicative process the
mentally deduced correlation functions that certainly arep-model cascad¢5] empirically describes the multifractal
translationally invariant. This apparent contradiction can bespectrum of intermittent fluctuations occurring in the energy
resolved quite easily: for @ne-dimensionalmodel configu-  dissipation of fully developed turbulence. It is described as
ration it is always assumed that the left and right spatial endollows: An energy (dissipation Eg=1 distributed uni-
points of the cascade are known; this means that the “obsefermly over an interval[0,1] splits into a partE;o=pEgy
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contained in the subintervaD,1/2] and into the remaining Once this evolution equation is inserted into Eg), re-
part E;;=(1—p)Eqy in [1/2,1]. The random weighp can  cursive relations for the correlation densitims1 _____ kg CanN

take the values (+ @)/2 or (1~ «)/2 with equal probability.  pe derived and solved. This has been explicitly demonstrated
This is already the splitting prescription for the first step. It iStor the p model in Ref[12] and extended to a more general
then iterated over all subintervals for the next cascade stepgjass of cascade models with different splitting functions in
in each breakup the random numberis tossed indepen- Ref.[13]. A forward evolution equation allows further gen-
dently from all other branchings. Aftel cascade steps we eralizations to multiplicative cascades with overlapping
arrive at 2 subintervalgbins of length 1/2 containing the brancheg14]. Hence, for thep model we merely restate the

energy densitieg;,= E;2’, where the bins at scaleé are  packward recursion relations for the correlation densities of
indexed by G<k<2’. After 10-12 cascade steps eachsecond order:

p-model configuration shows a striking similarity to the in-

termittent spatial fluctuations of the energy dissipation mea- [ (1+a?)pd for 0=k, k,<2i71
sured in fully developed turbulence. A multifractal analysis, o (-1) . ,
which quantifies the singularity strengths of the energy dis- (L+a%)pyg i-1y, 2i-1 for 217 1<k k<2J,
sipation field, further supports cascade models, as it is in,(i) — 2 -1
accordance with one-dimensional d§f®,11. However, a npklkz (1=a) for O§k1<2 "
closer look at true spatial correlation functions is in demand. and 2 1<k,<2,

If not o_nly the _n_wultﬁractal_spectrum, but also the s_patlal | or vice versa.
correlation densities of the first few ordéssy fourth or fifth )
orden, match the observed data reasonably well, the pro-

cesses are for all practical purposes indistinguishable. The construction O;J(I(Jl)k2 by iteration becomes complete by

To determine the spatial correlation densities it is most

i (0) —
convenient to use the generating function noting thatpog 1'. . . .
Figure. 1a) depicts the two-bin correlation densu’tyglk2

271 after sixp-model cascade steps fordk; ,k,< 26=64. The
Z[\]= exp(i 2 )\keJk> , (1) power-law rise (} «?)! towards the diagonal is an indica-
k=0 tion of the self-similarity of the hierarchicagd-model cas-
cade: the closer two bins are together, the more they share a

V\(here the bracke(t-_- ) |n_d|cates an averaging over fa_” pos- common (cascadg history and the stronger they are corre-
sible p-model configurations. The correlation densities fol- lated. For more details consult REL2]

!OW by tak.|nt?| ade.quate derivatives with respect to the con- g, Fig. X&) it is obvious that the second-order corre-
Jugate variables: lation densitypy , of the p model is not translationally in-
1 99Z[\] variant, i.e.,
Py, .. k(€K )T | (D
! ' R R A Pkyky 7 Pk, + Ak ky+ Ak - ®

whereq represents the order of the correlation function.  We find, for example, that according to E@) the correla-
The generating function for the model satisfies a back- tion between two adjacent bins at the lower edge of the in-

ward evolution equatiofl2] terval[0,1], i.e., the bins with labelk; =0 andk,=1, takes
the maximal possible valyes) = (1+ a?)’~(1— o?); those
7o :J' ZG-Dr 1+ g~ two bins share a long cascade history, as they split only ?n
(] p(a) [(rans ] the very last cascade step. On the other hand, the correlation

between the two adjacent bins in the very centefGf]
takes the smallest possible Va'UQJfl_lszfl:(l—az);
these two bins already become independent after the very
first cascade step. We emphasize that this strong dependence
A=W, a0 of the correlation between adjacent bins on their position in
0 it the observation interval is not an artifact of thenodel, but
M rather due to the strictly hierarchical organization of cascade

xZU7V[(1-q)Ad Y] dg, (3)

with the definitions

)\(L] l):()‘g)’ ceehgim1g), processes with nonoverlapping branches in general. In other

_ , . words, it is the property that larger eddies have of feeding

ANTY=(0\D, A, (4)  their energy only to offsprings within their boundaries that

renders the correlation densities not invariant under transla-

the splitting function tions. This stands in clear contradiction with the experimen-
1 1 tal results. In the next section we attempt to resolve this

uzzle.
P(@)=3da-a)*+ 5 dq+a), ® P So far the representation of the correlation densities is

based on a monoscale expansion of phmodel configura-
and the initial condition tions; consult the first row of Fig. 2. The bin correlation
densities can be thought of as the correlations between the
ZONO]=expirg). (6)  amplitudese,, of this expansion. Clearly, this monoscale
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FIG. 2. Monoscale bin representatifirst row) and multiscale
Haar-wavelet representatigaecond to fifth rowsof one p-model
configuration obtained aftet=3 cascade steps.

The amplitudegjk of the latter are related to the bin ampli-
tudese;, of the former by a linear transformatioV. This
transformation is called a Haar-wavelet transformation. We
then ask for the correlations

P(jiky) ...(jqkq):< €jky " qukq>

between the Haar-wavelet amplitudﬁégk. These wavelet
correlations are determined by employing the wavelet trans-
formation W either within the exponent of the generating
function (1) or directly to the bin correlation densiti€g);
for more details see Refgl2,13.

Figure 3a) depicts the second-order Haar-wavelet corre-
lations of thep-model cascade. The’2vavelet amplitudes
have been ordered according to

(€00, €00, €10 €11, €20, - - - afJ—l,zl-l—l)-

It is diagonal. In other words, the Haar-wavelet transforma-
tion completely “compresses” the second-order correlation
information to the diagonal. Moreover, the diagonal elements
Pik2=a’(1+a?)! reveal the same power-law scaling as
observed in the conventional two-bin correlation density to-
wards the diagonal, and in this way signal the self-similarity
of the underlying process.

Thus the representation of the correlation densities is fa-
cilitated tremendously once a wavelet transformation is em-

FIG. 1. Two-bin correlation densityy, for (&) the originalp  ployed: the diagonalization of the covariance matrix shows
model, (b) the p model made translationally invariant with two that the Haar wavelets represent convenient normal coordi-
independent configurations, aid the p model made translation- nates for binary multiplicative cascade models. We note that
ally invariant with two identical configurations. Parameters haveine higher-order correlation densities are also compressed,
been chosen a3=6 anda=0.4. and the few nonvanishing contributions provide direct infor-
mation about hierarchical clustering, i.e., on the correlations

of small structures(“eddies”) with their predecessors at
representation of the correlation functions is not an optimalarger scale$13,15.

choice for a hierarchically organized process like the

p-model cascade. A multiscale representation is certainly g, rRESTORATION OF TRANSLATIONAL INVARIANCE

better choice. Such a multiresolution expansion can be easily

motivated by the successive spatial splittings of pheodel In the preceding section we stated that the spatial corre-
cascade, which become finer in scale as the number of caktion densities of thgdg model, in particular, and of the bi-
cade steps increases; it is illustrated in the lower part of Fignary multiplicative cascade models, in general, are not trans-
2. Both the monoscale as well as the multiscale representéational invariant due to their hierarchical spatial
tions each completely characterizepanodel configuration. organization. This is in clear contradiction to the experimen-
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density

tal observations. The reason for this is obvious: in calculat:
ing the correlations for the various models we always keep

the branching tree at the same position with respect to th
observation window; its beginning starts at the left end an
stops at the right end of a cascade configuration. However,

we were to measure a time series, which is then identified

with a “spatial configuration” according to what is known
as Taylor’'s frozen hypothesis, we would not know anything
about the spatial location of a “true” configuration. This
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FIG. 4. An observation window is moved bin by bin over two
independentp-model configurations J=3, «=0.4) and in this
manner restores the translational invariance of the spatial correla-
tion densities.

witp,  with 2771 bins  and energy densities

e(pim2) = € (pq) for 0=k<2’ andey(uip,) = e 23(12)
for 27<k<2’*1. Then an observation window of a length
corresponding to 2bins is moved bin by bin over the aux-
iliary configuration; see Fig. 4. There aré @ifferent posi-
tions for the observation window. Each adjustment can be
thought of as an “experimentalp-model configuration be-
cause the beginnin@nd end of a “true” p-model configu-
ration is not matched, in general; it goes with energy densi-
ties e (t,mwimo) = €cst(meipy) with 0<k<27, which of
course depend on the position<®<2’ of the observation
indow and the two independemt-model configurations
1Mo In order to determine the spatial correlation densities
e now have to sample over dlland wqu,:

W

J

2°-1
1
<pk1>t: E 2 2 p;l.l/.LZEkl+t(/‘l’l/“L2)

t=0 pyup

if

= << 6k1>,u1,u,2>’[ '

lack of knowledge suggests the introduction of an additional

averaging of the spatial correlation densities obtained from
hierarchical cascade models over the unknown position of <pk1k2>t=
the branching tree with respect to the observation window. In
Sec. Il A we present a simple averaging scheme to restore

translational invariance, based on two indepengentodel
configurations; in Sec. Il B we briefly discuss some modifi-
cations of this scheme.

A. Scheme with two independent configurations

We consider one arbitrary configuratign,; of the p
model obtained afted cascade steps; it has dins with
energy densitieg,(u,), where 0<k<2’. From now on we
omit the indexJ for the energy densities, i.ec; =¢,. We
choose a second, again arbitrg@ymodel configurationu,
of equal length, but which is independent of the former; it
goes with energy densities(u,). Both configurations are

21
1
Y 20 M%q Py €y +t (L1 142) €yt 1 t2)

€)

— (e ek ugu o+ -

The inner bracke{ )MM2 indexed withuqu, is a shorthand
notation for the averaging over all independprnodel con-
figurations w, and u,, which occur with the probability
Pruysiy=PuyPuy The outer brackef ), indexed with the
position labelt indicates an averaging over all possible
positions of the observation window. By construction, the
spatial correlation densitie§py, kq>t are translationally
invariant.

The first-order correlation densi(\pkl>t is easy to calcu-

late, becauseklﬂ(ul,uz) depends on only one of the two

.....

joined together and constitute one auxiliary configurationconfigurationsu= g, or u= u,:
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l23—1 123—1
<Pkl>t:§tzo 2 pufklﬂ(/‘«):;tzo Pkl+t:Pk1:1a
=0 -
(10

because the one-bin correlation den$it<¥+t=pkl does not

depend on the position parameter, and for the energy-

conservingp model we havepklzl for all 0<k,;<2’.
For the second-order correlation denﬂmlkz)t we have
to be more careful:
1 291
<pk1k2>t:§t:20 ELZ Py, €k +t( 1M2) €+ (M fe2)

J_
12

23 =

1
A Pky+tky+te 1y

Two major cases have to be distinguished:
0=k, ,k,<2’—t (or 27—t=<k, ,k,<2) the two energy den-
sities €k, and €k, belong to the same “true’p-model con-
figurationu= w4 (or w=pu,) and we have

Pkt ky+t= > Pk, + () €yt
"

Pk +tky+t for w=pu,

= 12

Piy+t-23 ko +t-29  for w=pu, .

For these two cases the translated correlation density

Pk, +tky+t is directly expressible in terms of the trpemodel
correlation densitiepkiké. Still, we have to consider the case
0=<k;<2’—t and 2—t<k,<2’ (or vice versa Then e
and €k, belong to two different “true” p-model configura-

tions, which are independent of each other; hence, we dedu%J)
1

Pkl+t,k2+t:(z pulfklﬂ(ﬂl))(z Py, €k, +t(12)
M1 Mo

:pkl+t'pk2+t72~]:1- (13
Equations(11)—(13) are illustrated in Fig. 5 and represent
our recipe to determine translational invariant correlatio
densitieqof second order In Sec. 11l B we will also discuss
some variations of this approach.

Following Egs.(11)—(13), the second-order spatial corre-
lation density(py, k)« for the p model is shown in Fig. (b).
By construction it is translational invariant, i.e.,
(Prk)t= (P, +Akky+ak)- It reveals a minimum  of

(08 sk 14 ai=3[1+(1—a?)] at a line parallel to the
diagonal with a(bin) distance of 2~ 1; it occurs due to the
energy-conserving anticorrelatiqvkl,kﬁzyl: 1—a? with

0=k, ,k,<2’71 of the originalp model and due to the in-
dependence of the two trup-model configurations em-

ployed for the scheme to restore translational invariance. The

scaling behavior o(pk1k2>t perpendicular to the diagonal is
not dramatically altered.

TRANSLATIONAL INVARIANCE IN TURBULENT ...
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FIG. 5. The auxiliary second-order correlation density matrix is
based on two independemt-model correlations. The diagonal
blocks,akiké andpkﬁza,k?za are identical to the second-order cor-
relation density of th@p model; see Fig. ). The two off-diagonal
blocks are decorrelated, so that each element is equal to 1.
Pk, +tk,+t TEPresents the translated correlation density based on
measurements in the observation window of Fig. 4. The translation-
ally invariant correlation densitf(pklkz)t is obtained by averaging
over shifts along the diagonal from the lower left corner of the
auxiliary matrix to the upper right corner.

|

This also becomes clear once we investigate the box mo-
ments

2i-1

1 1
Mo()=55 2~ S o
¢! 2150 2907 Dipa-icy, 1 kg<(k+1)277] Plas - kq
(14
which represents averages of the correlation density

_____ kg~ Phy. ... kg of order g over boxes with a scale-
dependent bin size of'2). For q=2 they are depicted in
Fig. 6; it only deviates to some minor extent from the perfect
p-model scaling (# «?)!.

For the originalp model the Haar wavelets represent the
perfect building blocks(normal coordinates the Haar-
wavelet transformation leads to a perfect diagonalization of

the spatial correlation density of second orfie Fig. 83)].

Mhis is not the case for the translationally invariant correla-

tion density( pk1k2>t; its Haar-wavelet transform is shown in

Fig. 3(b). Although it is not diagonal anymore, it is still
quasidiagonal in a very pronounced way: diagonal elements
Of <pk1k2>t:Ek3,k4Wklk3Wk2k4<pk3k4>t dominate the Off'
diagonal elements, which mainly occur in interscale bands.
Hence, we conclude that as “quasi” building blocks of the
translationally invarianp model the Haar wavelets still ap-
pear to be fairly good approximations to the “true” normal
coordinates.

The scale dependence of the diagonal elements, i.e.,

121—1
Wq(j)= Ego D (i) (15)
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identical to the first one. The general relatigs still hold
with w,=u, and Py, = Puys @S does Eq(10) for the first-
order correlation density; i.e., agaipy )= 1 for all k;. Fig-

ure 5 has to be modified: the two off-diagonal blocks become
identical to the diagonal blocks, so that now each of the four
submatrices corresponds to one “tru@-model correlation
densitypklk2 of second order. As a consequence, E®)
remains unaltered, whereas Ef3) changes into

Pky+tky+t™ Pky+tky+t—27 (16)

for 0<k,<2’-t, 27-t<k,<2’ and

Pky+t, ky+t™ Pky+t—27 ky+t 17

A% 2Haar

for 27—t<k,<2’, 0=<k,<2’-t. Insertion of Egs.(12),
(16), and(17) into Eq. (11) yields the translational invariant
second-order correlation densi(q;m(lkz)t obtained with two

0.1 identicalp-model configurations; it is depicted in FigicL It
3;3§ I shows an approximate power-law decrease perpendicular to
007 | the diagonal until the minimum afpay -1+ ak)=1— a@?
006 - b with 0<Ak<2’ is reached at a bin distance of 2 from
. the diagonal. For larger bin distances the second-order cor-
J relation density increases again; it is reflection symmetric

around its minimum line due to the periodic continuation of

FIG. 6. Dependence of the box momefgguares and Haar- 0 5 model configuratiofequal to two identical configura-

wavelet momentgcircles of orderg=2 on the resolution scalg

L . . tions).
for the originalp m_odel(_dash_ed Ilne)sgnd thep model with res- Many other schemes to restore translational invariance of
toration of translational invariance using two independent configu-

) -~ - _ spatial correlation densities can be constructed. For example,
rations(solid lineg. Parameters aré=7 anda=0.4. . .
we could return to the scheme with twor more indepen-
. . ) ) dentp-model configurations of equal length and change the
is depicted in the lower part of Fig. 6. Here, even pr2  size of the observation window/experimental” configura-
the scheme to restore translational invariance leads to sizabi@yn) to be smaller or larger than opemodel configuration.
deV|at|onzs frozm. the p model's perfect scaling |n the first case we would arrive at a submatrix(pf v )¢ ;
S g= i i i . L .
p(a=a“(1+a), in particular at the roughessmall j) 450, in the second cas@y, )t is identical to the result

and finest(largej) scales. The reason for this is, once agam’depicted in Fig. ib), except for the long range bin correla-

that the wavelet amplitudes;, represent local differences )
Jk — = J = -
instead of local averages; hence they are much more send2"S With [ki—ko[=2", where (pi,)i=1 due to the as

tive to the nature of the fluctuations occurring in the “ex- Sumed independence of the multienodel configurations
perimental” p-model configurations. of bin length 2 each. From an “experimental” point of

view, this onset of decorrelation in the spatial correlation
B functions for large bin distances is a tool for determining the
B. Modified schemes relevant length scales of the cascade regime.

In the preceding section we have used two independent
p-model configurations to restore the translational invariance
of the covariance matripklkz. Mathematically it is also in-

teresting to study the case of periodiemodel configura- We now investigate the influence of our scheme to restore
tions; here we could think of a one-dimensiopamodel as translational invariance in the spatial correlation densities on
represented on a ring, where the beginning and the end ofthe so-called multiplier distributions. The latter represent a
configuration are connected. This scenario occurs, for exmuch better opportunity to compare theoretical models with
ample, in high energy physics when two-dimensional parexperimental results than a scaling analysis, as they are more
ticle density fields are studied in the coordinateg®),  directly related to the splitting function of tHassumegun-
where 7 is the particle’'s(pseudgrapidity and ® its azi- derlying cascade procegsee Eqs(3) and(5)]. In Sec. IV A
muthal angle with respect to the collision axis. The overallwe work again with thgg-model splitting function, whereas
procedure with periodic configurations is the same as withn Sec. IV B we concentrate on a splitting function obtained
two independent ones presented in Sec. Il A. Only somempirically by Sreenivasan and Stolovitzky1]. For further
minor technicalities have to be changed. First, of course, theupport of the conclusions to be drawn we also investigate a
secondp-model configuration shown in Fig. 4 has to be nonhierarchical breakup process in Sec. IV C.

IV. MULTIPLIER DISTRIBUTIONS
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A. p-model multiplier distributions

We have another close look at the evolution of one
p-model configuration; consult again the beginning of Sec
II. For an arbitrary cascade st¢p-j+ 1 the energies evolve
as

EJrO—WOED
T=wlel, (18
with 0<k<2!, whereW!)) are called multipliers and take on
two values, i.e. W)= (1= a)/2. In terms of energy densi- ] 1
ties, Eq.(18) translates into 004 ol 08 i 1 g L6
4 4 £,0
6(21k+ 1)_ 2VV(:1)GE<J) 0
0 il i ( ;
6(2|k+ 1)_ 2w(:])6(kj). (19 FIG. 7. Probability density(ey”’) of the global energy density

e =eO(t,uu1,) in the observation window; the latter depends

Given now onep-model configuration, we can identify the on the translation indek of the observation window and the two

“splitting weight” « entering the multiplier according to  independentp-model configurationsu = u,u,. Parameter values
areJ=9 andae=0.4.

+1 (j+1 i i
(J )_ Jk) W(tj)_W(:”

<J+1> J+1) TN =*a. (20 QOW ar_ld over all dc_)ublptmodel configurationlmlgz. This

tenrr Wi+ W3 is continued recursively in the “backward” direction for all
scales)> =0, starting from scal¢=J—1 up to the coars-
st scalg =0. In this way we obtain for each scale a “back-
ward” or “experimental” splitting function

Consequently, we arrive at the “experimental” probability e
density of the splitting parametey;

1 1 .
p(a)=58(a—a)+58(q+a), (21 12711272
2 2 J) q)_ E p,ul,uz J 2 E 5(q ay )(tuu“llu“Z))
L. . . ) 27t 21k=0
which is exactly equal to the splitting functiof®) of the (24)
energy-conserving model. Again, for the originap model
the latter depends neither on scaleor on localizatiork. This construction is difficult to perform analytically;

This is going to change once we consider the schemgherefore we sample ovelN double p-model configura-
(with two independenp-model configurationsdepicted in  tjons uii, and replace S P M2—>1/N2i N with
IFlg 4 to restore translational invariance in the spatial correlu = p1(i) wo(i). Furthermore, due to the manyfunc-
ation densities. The probability density for the splitting Pa-iions appearing in Eq.(24), we divide the interval
rameter is determined in the following way: we select two —1=q=1 into 2M cells of length Aq=1/M, integrate
arbitrary and independerg-model configurationsuy and )y over each such cell, and arrive at the discretized
Mo, €ach obtained aftel cascade steps, join them together, babili : :

) ) d X probability density function,
and choose an observation window of bin lengtha posi-
tion t; consult Fig. 4. We then have one “experimental”

I T . - 1 (amtdal & 1
p-model conflgurat|on with energy densities p (g = —> =
et rair) = € (mapma) = e (t,uipz), where O<k<2’. Aglg, N&E2
We think of this configuration as p-model-like configura-
tion as we force it into a spatially dyadic scheme, where we i) . .
operate with thegbackward energy-conserving smoothings X 2 2l kE_: A=y (t, pma(D) (i) ]da,

, 1 . 25
&) (t,uapo)= E[E(zjk+ Dt mapo) + €958 (L apo)] @9
(220  With gn=mAq and—M=m<M.
Before we present the result for the discretized probability
with 0<<j<<J. Then, analogously to Eq20), we determine density function we point out one more detail: since the ob-

the splitting parameters(')(t,,ul,uz) by servation window reaches over two independent “true”
_ p-model configurations, the total energy accumulated in the
P (t o) — e (t papo) observation window will generally not be equal to the initial

energy Eqo of the p model; in other wordse{*(t, u1,)
(23  *1.However, we expect the distributiquf ) [where we

set €= el®(t,u1,) for brevity] to be narrowly peaked
This holds for ong and one choice:,u,; we then have to around 1; this behavior is confirmed numerically in Fig. 7.
average over all positions<0t<2’ of the observation win- Observe that the prescriptiq@3) for determining the “ex

() _
ay (trlu’llu’Z)_ i i .
€SV (t pmapo) + €5 (t o)
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FIG. 8. Scale-dependent probability densitig8(q) of the “experimental” splitting parameters of the translation invaripnnodel
obtained by averaging over shifts of the observation window over two indepepdmoidel configurations. Parameters have been set to
J=9 anda=0.4.

perimental” splitting parameters)(t,u1u,) is indepen- can only takeJ+1 different values at most, namely
dent of the variability ofe®)(t, u1u,) and, thus, no renor- (1+a)’, (1+a)’ " (1-a),...,(1+a)(1-a)’"*, and
malization is necessary. (1— a)’. Out of these, only a few different ratios of the form
Figure 8 illustrates the scale-dependent discretized prold23) can be formed, some of them occurring quite rarely. For
ability densitypt(q) of Eq. (25), where the scheme with the next rougher scalgs<J, the e{(t,u1u,) can take on
two independenp-model configurations to restore transla- more than)+ 1 values; see Eq22). Hence, for decreasing
tional invariance has been employed. We u3e cascade more and more possible values of rati@3) arise, which
steps anda=0.4, corresponding t@=(1+@)/2=0.7 of  explains that the probability densitp@’(q) becomes
Ref._[5]. The splitting parameter 1<qg<1 is related to fche smoother ag—0. For smallj the p¥)(q) even seem to
multiplier O<sW=<1 by W=(1+0)/2; thus, the splitting converge and become approximately scale independent.
functionsp!’(q) can also be thought of as “experimental” |n view of this result one question naturally arises: how
multiplier distributions. They are, by construction, symmet-relevant is thep-model splitting function(5) in describing
ric aroundq=0 (or W=1/2, respectively hence, we only the energy dissipation process in fully developed turbulence?
show the part forq=0. Contrary to the “true”p model  With our scheme to restore translational invariance in the
(without restoration of translational invariancewhere  spatial correlation densities we have designed a “gedanken”
p{)(q) has only twos-function-like contributions atj= =«  experiment on how an experimentalist would deduce the
and is independent of the scgldsee Eq(5)], the splitting  probability density functions for the splitting weights,
function now shows scale dependence. For largealues  which is trivially related to the muiltiplier distributions and,
only a few pronounced peaks occurpf’(q), the dominat-  with the presumption of energy conservation, to the splitting
ing ones keeping a slowly decaying memory of the origihial function. Apparently, these experimentamodel splitting
functions atq= = «; this is easily understood: the energy functions are quite different from the original orig). A
densitieSe(kJ)(t,MM) of an “experimental” p-model con- dominant peak afj= =+ « is still found on all scales, but also
figuration, which consists of two independent realizations ofother g values contribute to a large extent; moreover, the
true p-model configurations obtained aft@rcascade steps, experimental p-model splitting function becomes scale-
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dependent, in contrast to the original one. In other words, wevhere the single parametgr=3.2 is chosen. This represents
start with a self-similar cascade model with no translationak good fit to the empirical multiplier distributions, which are
invariance, then restore translational invariance, but losebserved to be scale-independent over a wide range of scales
self-similarity. Hence, we should pose the above question ifi11]; only for the very fine scaleflargej) do they deviate
another way: can we find a splitting function which staysand become wider, whereas for the very rough sc@esll

more or less the sam@s stabl¢ as the scheme to restore j) they narrow more towards & function atq=0.

translation invariance is applied, and how relevant is it in  With a new splitting function like Eq(26) it is straight-
describing real data in fully developed turbulence? In thisforward to calculate the spatial correlation densities. The
context it is most natural to look on the experimentally de-spatial dyadic structure of the cascade model with the em-

duced multiplier distributions obtained from real data. pirically deduced splitting functiorf26), which we hence-
forth refer to as a SRST cascade, is identical togheodel
B. Experimental multiplier distributions process. Hence, Eq&)—(4), (6), and(26) can be employed.

. . . . For the construction of the second-order correlation densi-
Out of one-dimensional time series from fully developed;og we can use the recursion relatioi@s with the substi-

turbulence, Sreenivasan and Stolovitzk§RST) deduced . I 1 (1402 2

empirically a largely scale-independent multiplier distribu—tumlnS (I+ a®) ==, (11q) p§R31(q)dq and (1~ a%)

tion [11]. A suitable parametrization is given by tigdis- —J-1(1+0a)(1~a)Psrsi(q)dq; for more technical details
' P 9 y consult[13]. The two-bin correlation densityy x, of the

tribution,
SRST cascade looks the same as for ph@odel case de-
1 F(Zﬂ)/ 1+q\ft1-q\A L picted in Fig. 1a); this also holds for the Haar-wavelet trans-
Psrstd) = 5 2\ 72 ( > ) formed correlation densities and the various moments.

I'(B) The scheme presented in Sec. Il A to restore translational
1 T(28) invariance with two independen_t cascac_ie _configurations now

= ———(1-)F (26)  heeds to be modified for one tiny detail: instead of two in-

22671 1(B)? dependenp-model configurations we now choose two inde-

p?P(q)

p?(q)

p?(q)

FIG. 9. Scale-dependent probability densitilglim(q) of the “experimental” splitting parameters of the translation invariant SRST-
cascade model obtained by averaging over shifts of the observation window over two independent SRST-cascade configurations. Parameters
have been set td=9 andB=3.2. For comparison, the empirical splitting functipgrs{(q) of Eq. (26) with 8=3.2 is shown as a solid
curve.
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pendent SRST-cascade configurations; the rest stays the
same. Again, the translationally invariant correlation density
(pk1k2>t for the SRST cascade has the same appearance a

the one shown in Fig.(b), which has been obtained from the
p model; this also holds for the moments and wavelet trans-
formed correlation densities considerte Figs. &) and

6].

Having in mind the question posed at the end of Sec.
IV A, we now focus on the impact of the scheme to restore
translational invariance on the “true” probability density
function psrs(q), which can be interpreted either as a mul-
tiplier distribution or as a splitting function. We proceed
again according to Eq25). The results are depicted in Fig.
9. For a large regime of scal¢goughly 2<j<7) the “ex-
perimental”pg%y(q) more or less collapse with the original
Psrs(q) (solid curve. For the very rough scalgs=0,1 the
distributions become narrower arouqger 0, which is also in
accordance with the real experimental observatjdis For
the finest scale shown, i.¢ =8, the distribution is more flat; . ..\ cpsT cascade process with6 and the SRST-
this trend also agrees with the real experimental observatior'g)Iitting function(26) with 8=3.2.

[11]. It seems that we have already found what we were

looking for: in our simple scheme to restore translationalne same number of spikes and holes but no longer reflects
invariance in the turbulent cascade models, the experimenne hierarchical ordering of the cascade process.

tally deduced scale-independent multiplier distributi@6) After the random permutation of the bin ordering, two
reproduces itself over many scales. Two conclusions can bﬁeighboring bins with labelskand X%+1 do not share a
_drawn: first of all, the simple re_storation scheme with WO common history anymore; hence, they become decorrelated.
independent cascade configurations appears to be confirmggcent for first order, the spatial correlation densities of this
or at least mimics some relevant truth; second and maybgyndom process, which can be viewed as a one-step breakup
more far-reaching, the simple cascade models, used hitherB}ocess(BP), differ drastically from those of the SRST cas-
as toy models to describe fluctuations in the energy dissipgsage. Again we pick the second order for an illustration. The

tion process in_fuIIy developed turbulence_, have_ obtain_ed Aiagonal elementsp(kj)k (BP) remain the same as for the
deeper foundation from a phenomenological point of VIew'SRST cascade: 1"

We start with a hierarchical, self-similar cascade model with
the scale-independent splitting functipggs(q), restore the 1 J
missing translational invariance, and arrive at effective split- pffl)_kz(BP)=< f (1+q)2pSRs1(q)dq) . (27
ting functions pl%s(q)~psrs{@), Which are quite scale- -1
independent and almost identical to the original one. Thisryg ot giagonal elements are all equal and easy to calculate
finding confirms and extends the main conclusions of Refy, .o \ve make use of energy conservation:
[11] in that the empirically deduce@ function has the pe-
culiar property of being stable with respect to our scheme to 1=(E?)
restore translation invariance. 5 :

Before we take this statement to the books we should also < ( 121 ) ( 121 ) >

FIG. 10. Two-bin correlation densii;yklkz(BP) for the spatially

. . . J J
check counterexamples. Hence, in Sec. IV C we investigate EKZO fﬂl) ;kz—:o €f<2)
the multiplier distribution obtained from a nonhierarchical v 2

random process. 1 291
35, 20 PP
1.82—
C. Multiplier distribution of a one-step breakup process
. - 1
Like the p model the original SRST-cascade modeith — E[zpr(Jl):kz(Bp)JrZJ(ZJ_ 1)p(ki)¢k2(BP)];
out restoration of translation invariance based on a hier- 2

archical (dyadig ordering of the energy densities _
e (w)=eu(n). The energy densitieses)(u) and from here it follows that
e(zjk)ﬂ(,u) of two neighboring bins both evolve from the

same “parent” energy density{’ Y. We now introduc_e a pg)#kz(BP): 5 [2J—p(kJ1):k2(BP)]. (29)
random process, which produces configurations with the 2°-1

samee{”(u) values, but with a completely random spatial _ _ 0 _ o
ordering. In practice this means: we take one arbitrary! "€ tWO-bin correlation densityy i (BP) is shown in Fig.
SRST-cascade configuratignwith energy densities(”)(x) ~ 10. As expected it is completely different from Fig(all
assigned to bins €k<2; then we randomly permute the ~ Where py \, of the p model has been depicted, the latter
values to obtain a modified configuration that still hasbeing the same as for the SRST cascade. This obvious dif-
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p?(q)

p?(q)

p?(q)

FIG. 11. Scale-dependent multiplier distributip@%(q) out of the restoration scheme for translational invariance with two independent,
spatially randomized SRST-cascade configurations. Parameters have beed=sétand 3= 3.2. For comparison, the empirical splitting
function psrs(q) of Eq. (26) with =3.2 is shown as a solid curve.

ference still holds once we use our scheme with two indeunder translations. Due to the random shifting inherent in the
pendent random configurations to restore translational invarirestoration scheme, the self-similar structure of the hierarchi-
ance. cal cascade models is lost in the first place. This effect is best
In terms of spatial correlation densities the SRST cascadgeen in the multiplier distributions for the textbook cascade
can be clearly distinguished from the corresponding randommodel, i.e., thep model: after translational invariance in the
ized process. The same is also true for the multiplier distrizorrelation functions is restored, the multiplier distributions
butions pi(q) of Eq. (25) once we apply the scheme to pecome scale-dependent and differ substantially from the
restore translational invariance with two independent, nowriginal one. Strikingly, this is not the case once the empiri-
spatially randomized SRST-cascade configurations. The res|ly deduceds function of Ref[11] is taken as the splitting
sult is illustrated in F|g 11. No approximate scale inVariancefunction for the cascade model; the “experimenta|” multi-
and no convergence to the multiplier distributiogrs(d) of  plier distributions obtained after the restoration of transla-
Eq. (26) (solid line) can be claimed. This outcome further tional invariance then stay more or less scale-invariant and
underlines the statements given at the end of Sec. IVB. equal to the original one. Moreover, the deviations from
scale invariance at the very rough and the very fine scales are
qualitatively the same as seen in experiment. This demon-
strates that in connection with discrete multiplicative cascade
We have presented a simple scheme to restore translaodels our simple scheme for the restoration of translational
tional invariance in hierarchical multiplicative cascade mod-invariance in the spatial correlation functions seems to be
els: an “experimental” configuration is constructed from consistent with experimental data for the energy dissipation
two independent cascade configurations of equal length, thigeld in fully developed turbulence.
latter being attached to the former. By randomly shifting the Some further questions in connection with our scheme to
observation window around, the knowledge about the spatiakestore translational invariance can be posed: are there other
position of individual cascade configurations is lost and, consplitting functions that are more or less left invariant under
sequently, the spatial correlation functions become invarianthis scheme, or is the experimentally deduced splitting func-

V. CONCLUSIONS
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tion a kind of attractor for various different input splitting ACKNOWLEDGMENTS
functions? What about various conditioned multiplier distri-
butions? Work in this direction is currently in progress.
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