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Translational invariance in turbulent cascade models
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Due to the underlying hierarchical structure, spatial correlation functions calculated from multiplicative
cascade models are not translationally invariant. A scheme is presented that restores translational invariance by
averaging over the experimentally unknown spatial location of cascade realizations with respect to the obser-
vation window. The impact of this scheme on multiplier distributions for the energy dissipation field in fully
developed turbulence is analyzed; only the experimental multiplier distribution is found to be invariant under
a wide range of scales.@S1063-651X~97!14510-X#

PACS number~s!: 47.27.2i, 05.40.1j, 02.50.Sk
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I. INTRODUCTION

Fully developed turbulence remains a challenging puz
To our knowledge no analytic derivation of the intricate flu
tuations in the velocity or energy dissipation field has be
given from first principles, i.e., the Navier-Stokes equatio
although some recent approaches@1# appear to be promising
Astonishingly, many features of experimental observatio
are also found in simple heuristic models, which thus may
taken as a basis to develop a better phenomenological
mathematical understanding of turbulence. Among th
models are, for example, a variety of multiplicative casca
models~or weight-curdling models! @2–5#, diffusion models
@6,7#, the She-Leveque model@8#, and approaches based on
Fokker-Planck equation@9#.

In this paper we concentrate on multiplicative casca
models @4,5#, which successfully capture many statistic
features of time series obtained from measurements of
energy dissipation field in fully developed turbulence. In p
ticular, the multifractal analyses, which emphasize the sta
tics of local singularity strengths, give remarkable go
agreement between model predictions and experimental
~see, e.g.,@10# and @11# and references therein!. Standard
multifractal analyses, however, are based on the sca
properties of moments~i.e., integrals over correlation func
tions! and thus obscure information on the spatial corre
tions of the energy dissipation field. The latter contain
plethora of additional information and allow us, in principl
to investigate the nature of turbulence on a deeper level

In two recent papers@12,13# the spatial correlation dens
ties of a general class of multiplicative cascades, includ
the a model @4# and thep model @5# have been calculate
analytically with generating function techniques. Due to t
hierarchical organization of the considered cascade mod
their spatial correlation functions turn out not to be invaria
under spatial translations. This is in clear contrast to exp
mentally deduced correlation functions that certainly
translationally invariant. This apparent contradiction can
resolved quite easily: for a~one-dimensional! model configu-
ration it is always assumed that the left and right spatial
points of the cascade are known; this means that the ‘‘ob
561063-651X/97/56~4!/4263~12!/$10.00
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vation window’’ always contains one full cascade, whic
implies that the observer is able to ‘‘trigger’’ a large-edd
structure and record its intrinsic decay. The experimen
analysis of recorded time series, which are then interpre
as spatial configurations of the energy dissipation field
cording to Taylor’s frozen hypothesis, does not employ su
a trigger. In order to bring model simulations closer to e
perimental measurement procedures, an averaging ove
unknown position of the large scale structures with respec
the observation window needs to be taken into account.
course, such an averaging scheme destroys the strict
similarity of the hierarchical cascade models. The questio
then, how much? A proper investigation of this point is t
subject of this paper.

The organization of the paper is as follows. In Sec. II w
briefly review how to calculate spatial correlation functio
and their wavelet transforms for multiplicative cascade p
cesses. A simple scheme to restore translational invarianc
the correlation functions and in their wavelet transforms
discussed in Sec. III. Basically it uses two independ
model configurations of equal lengths, joins them togeth
and determines the spatial correlations from ‘‘observe
configurations, which have the same length as each m
configuration, but are shifted randomly inside the two ad
cent model configurations. We also discuss the case of p
odic continuation. In Sec. IV we investigate the impact
this scheme on the so-called multiplier distributions for tw
specific cascade prescriptions. This is also discussed f
nonhierarchical breakup process and compared to the
previous cases. We summarize the results in Sec. V and
a short outlook.

II. SPATIAL CORRELATIONS IN RANDOM
MULTIPLICATIVE PROCESSES

As a prototype for a random multiplicative process t
p-model cascade@5# empirically describes the multifracta
spectrum of intermittent fluctuations occurring in the ener
dissipation of fully developed turbulence. It is described
follows: An energy ~dissipation! E0051 distributed uni-
formly over an interval@0,1# splits into a partE105pE00
4263 © 1997 The American Physical Society
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4264 56MARTIN GREINER, JENS GIESEMANN, AND PETER LIPA
contained in the subinterval@0,1/2# and into the remaining
part E115(12p)E00 in @1/2,1#. The random weightp can
take the values (11a)/2 or (12a)/2 with equal probability.
This is already the splitting prescription for the first step. It
then iterated over all subintervals for the next cascade st
in each breakup the random numberp is tossed indepen
dently from all other branchings. AfterJ cascade steps w
arrive at 2J subintervals~bins! of length 1/2J containing the
energy densitieseJk5EJk2

J, where the bins at scaleJ are
indexed by 0<k,2J. After 10–12 cascade steps ea
p-model configuration shows a striking similarity to the i
termittent spatial fluctuations of the energy dissipation m
sured in fully developed turbulence. A multifractal analys
which quantifies the singularity strengths of the energy d
sipation field, further supports cascade models, as it is
accordance with one-dimensional data@10,11#. However, a
closer look at true spatial correlation functions is in dema
If not only the multifractal spectrum, but also the spat
correlation densities of the first few orders~say fourth or fifth
order!, match the observed data reasonably well, the p
cesses are for all practical purposes indistinguishable.

To determine the spatial correlation densities it is m
convenient to use the generating function

Z@l#5K expS i (
k50

2J21

lkeJkD L , ~1!

where the bracket̂•••& indicates an averaging over all po
sible p-model configurations. The correlation densities f
low by taking adequate derivatives with respect to the c
jugate variableslk :

rk1 , . . . ,kq
5^eJk1

•••eJkq
&5

1

i q

]qZ@l#

]lk1
•••]lkq

U
l50

, ~2!

whereq represents the order of the correlation function.
The generating function for thep model satisfies a back

ward evolution equation@12#

Z~ j !@l~ j !#5E p~q!Z~ j 21!@~11q!lL
~ j 21!#

3Z~ j 21!@~12q!lR
~ j 21!# dq, ~3!

with the definitions

l~ j !5~l0
~ j ! , . . . ,l2 j 21

~ j !
!,

lL
~ j 21!5~l0

~ j ! , . . . ,l2 j 2121
~ j !

!,

lR
~ j 21!5~l2 j 21

~ j ! , . . . ,l2 j 21
~ j !

!, ~4!

the splitting function

p~q!5
1

2
d~q2a!1

1

2
d~q1a!, ~5!

and the initial condition

Z~0!@l~0!#5exp~ il0
~0!!. ~6!
s;

-
,
-

in

.
l

-

t

-
-

Once this evolution equation is inserted into Eq.~2!, re-
cursive relations for the correlation densitiesrk1 , . . . ,kq

can
be derived and solved. This has been explicitly demonstra
for the p model in Ref.@12# and extended to a more gener
class of cascade models with different splitting functions
Ref. @13#. A forward evolution equation allows further gen
eralizations to multiplicative cascades with overlappi
branches@14#. Hence, for thep model we merely restate th
backward recursion relations for the correlation densities
second order:

rk1k2

~ j ! 55
~11a2!rk1 ,k2

~ j 21! for 0<k1 ,k2,2 j 21,

~11a2!rk122 j 21,k222 j 21
~ j 21!

for 2 j 21<k1 ,k2,2 j ,

~12a2! for 0<k1,2 j 21,

and 2j 21<k2,2 j ,

or vice versa.
~7!

The construction ofrk1k2

(J) by iteration becomes complete b

noting thatr00
(0)51.

Figure. 1~a! depicts the two-bin correlation densityrk1k2

after six p-model cascade steps for 0<k1 ,k2,26564. The
power-law rise (11a2) j towards the diagonal is an indica
tion of the self-similarity of the hierarchicalp-model cas-
cade: the closer two bins are together, the more they sha
common~cascade! history and the stronger they are corr
lated. For more details consult Ref.@12#.

From Fig. 1~a! it is obvious that the second-order corr
lation densityrk1k2

of the p model is not translationally in-
variant, i.e.,

rk1k2
Þrk11Dk,k21Dk . ~8!

We find, for example, that according to Eq.~7! the correla-
tion between two adjacent bins at the lower edge of the
terval @0,1#, i.e., the bins with labelsk150 andk251, takes
the maximal possible valuer01

(J)5(11a2)J21(12a2); those
two bins share a long cascade history, as they split only
the very last cascade step. On the other hand, the correla
between the two adjacent bins in the very center of@0,1#
takes the smallest possible valuer2J2121,2J215(12a2);
these two bins already become independent after the
first cascade step. We emphasize that this strong depend
of the correlation between adjacent bins on their position
the observation interval is not an artifact of thep model, but
rather due to the strictly hierarchical organization of casc
processes with nonoverlapping branches in general. In o
words, it is the property that larger eddies have of feed
their energy only to offsprings within their boundaries th
renders the correlation densities not invariant under tran
tions. This stands in clear contradiction with the experime
tal results. In the next section we attempt to resolve t
puzzle.

So far the representation of the correlation densities
based on a monoscale expansion of thep-model configura-
tions; consult the first row of Fig. 2. The bin correlatio
densities can be thought of as the correlations between
amplitudeseJk of this expansion. Clearly, this monosca
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56 4265TRANSLATIONAL INVARIANCE IN TURBULENT . . .
representation of the correlation functions is not an optim
choice for a hierarchically organized process like t
p-model cascade. A multiscale representation is certain
better choice. Such a multiresolution expansion can be ea
motivated by the successive spatial splittings of thep-model
cascade, which become finer in scale as the number of
cade steps increases; it is illustrated in the lower part of F
2. Both the monoscale as well as the multiscale represe
tions each completely characterize ap-model configuration.

FIG. 1. Two-bin correlation densityrk1k2
for ~a! the originalp

model, ~b! the p model made translationally invariant with tw
independent configurations, and~c! the p model made translation
ally invariant with two identical configurations. Parameters ha
been chosen asJ56 anda50.4.
l

a
ily

s-
g.
ta-

The amplitudesẽ jk of the latter are related to the bin ampli
tudeseJk of the former by a linear transformationW. This
transformation is called a Haar-wavelet transformation. W
then ask for the correlations

r̃ ~ j 1k1! . . . ~ j qkq!5^ ẽ j 1k1
••• ẽ j qkq

&

between the Haar-wavelet amplitudesẽ jk . These wavelet
correlations are determined by employing the wavelet tra
formation W either within the exponent of the generatin
function ~1! or directly to the bin correlation densities~2!;
for more details see Refs.@12,13#.

Figure 3~a! depicts the second-order Haar-wavelet corr
lations of thep-model cascade. The 2J wavelet amplitudes
have been ordered according to

~e00, ẽ 00, ẽ 10, ẽ 11, ẽ 20, . . . ,ẽ J21,2J2121!.

It is diagonal. In other words, the Haar-wavelet transform
tion completely ‘‘compresses’’ the second-order correlati
information to the diagonal. Moreover, the diagonal eleme
r̃ ( jk)25a2(11a2) j reveal the same power-law scaling a
observed in the conventional two-bin correlation density t
wards the diagonal, and in this way signal the self-similar
of the underlying process.

Thus the representation of the correlation densities is
cilitated tremendously once a wavelet transformation is e
ployed: the diagonalization of the covariance matrix sho
that the Haar wavelets represent convenient normal coo
nates for binary multiplicative cascade models. We note t
the higher-order correlation densities are also compress
and the few nonvanishing contributions provide direct info
mation about hierarchical clustering, i.e., on the correlatio
of small structures~‘‘eddies’’! with their predecessors a
larger scales@13,15#.

III. RESTORATION OF TRANSLATIONAL INVARIANCE

In the preceding section we stated that the spatial cor
lation densities of thep model, in particular, and of the bi-
nary multiplicative cascade models, in general, are not tra
lational invariant due to their hierarchical spatia
organization. This is in clear contradiction to the experime

e

FIG. 2. Monoscale bin representation~first row! and multiscale
Haar-wavelet representation~second to fifth rows! of onep-model
configuration obtained afterJ53 cascade steps.
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tal observations. The reason for this is obvious: in calcu
ing the correlations for the various models we always ke
the branching tree at the same position with respect to
observation window; its beginning starts at the left end a
stops at the right end of a cascade configuration. Howeve
we were to measure a time series, which is then identi
with a ‘‘spatial configuration’’ according to what is know
as Taylor’s frozen hypothesis, we would not know anythi
about the spatial location of a ‘‘true’’ configuration. Th
lack of knowledge suggests the introduction of an additio
averaging of the spatial correlation densities obtained fr
hierarchical cascade models over the unknown position
the branching tree with respect to the observation window
Sec. III A we present a simple averaging scheme to res
translational invariance, based on two independentp-model
configurations; in Sec. III B we briefly discuss some mod
cations of this scheme.

A. Scheme with two independent configurations

We consider one arbitrary configurationm1 of the p
model obtained afterJ cascade steps; it has 2J bins with
energy densitiesek(m1), where 0<k,2J. From now on we
omit the indexJ for the energy densities, i.e.,eJk[ek . We
choose a second, again arbitraryp-model configurationm2
of equal length, but which is independent of the former
goes with energy densitiesek(m2). Both configurations are
joined together and constitute one auxiliary configurat

FIG. 3. Haar-wavelet transformed correlation dens

r̃ ( j 1k1),( j 2k2) of ~a! Fig. 1~a! and ~b! Fig. 1~b!.
t-
p
e

d
if
d

l

of
n
re

-

t

n

m1m2 with 2J11 bins and energy densitie
ek(m1m2)5ek(m1) for 0<k,2J andek(m1m2)5ek22J(m2)
for 2J<k,2J11. Then an observation window of a lengt
corresponding to 2J bins is moved bin by bin over the aux
iliary configuration; see Fig. 4. There are 2J different posi-
tions for the observation window. Each adjustment can
thought of as an ‘‘experimental’’p-model configuration be-
cause the beginning~and end! of a ‘‘true’’ p-model configu-
ration is not matched, in general; it goes with energy den
ties ek(t,m1m2)5ek1t(m1m2) with 0<k,2J, which of
course depend on the position 0<t,2J of the observation
window and the two independentp-model configurations
m1m2. In order to determine the spatial correlation densit
we now have to sample over allt andm1m2:

^rk1
& t5

1

2J (
t50

2J21

(
m1m2

pm1m2
ek11t~m1m2!

5Š^ek1
&m1m2

‹t ,

^rk1k2
& t5

1

2J (
t50

2J21

(
m1m2

pm1m2
ek11t~m1m2!ek21t~m1m2!

5Š^ek1
ek2

&m1m2
‹t , . . . . ~9!

The inner bracketŠ ‹m1m2
indexed withm1m2 is a shorthand

notation for the averaging over all independentp-model con-
figurations m1 and m2, which occur with the probability
pm1m2

5pm1
pm2

. The outer bracketŠ ‹t indexed with the

position label t indicates an averaging over all possib
positions of the observation window. By construction, t
spatial correlation densitieŝrk1 , . . . ,kq

& t are translationally
invariant.

The first-order correlation densitŷrk1
& t is easy to calcu-

late, becauseek11t(m1m2) depends on only one of the tw

configurationsm5m1 or m5m2:

FIG. 4. An observation window is moved bin by bin over tw
independentp-model configurations (J53, a50.4) and in this
manner restores the translational invariance of the spatial cor
tion densities.
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56 4267TRANSLATIONAL INVARIANCE IN TURBULENT . . .
^rk1
& t5

1

2J (
t50

2J21

(
m

pmek11t~m!5
1

2J (
t50

2J21

rk11t5rk1
51,

~10!

because the one-bin correlation densityrk11t5rk1
does not

depend on the position parameter, and for the ene
conservingp model we haverk1

51 for all 0<k1,2J.

For the second-order correlation density^rk1k2
& t we have

to be more careful:

^rk1k2
& t5

1

2J (
t50

2J21

(
m1m2

pm1m2
ek11t~m1m2!ek21t~m1m2!

[
1

2J (
t50

2J21

rk11t,k21t . ~11!

Two major cases have to be distinguished:
0<k1 ,k2,2J2t ~or 2J2t<k1 ,k2,2J) the two energy den-
sities ek1

and ek2
belong to the same ‘‘true’’p-model con-

figurationm5m1 ~or m5m2) and we have

rk11t,k21t5(
m

pmek11t~m!ek21t~m!

5H rk11t,k21t for m5m1

rk11t22J,k21t22J for m5m2 . ~12!

For these two cases the translated correlation den
rk11t,k21t is directly expressible in terms of the truep-model

correlation densitiesrk
18k

28
. Still, we have to consider the cas

0<k1,2J2t and 2J2t<k2,2J ~or vice versa!. Then ek1

and ek2
belong to two different ‘‘true’’p-model configura-

tions, which are independent of each other; hence, we de

rk11t,k21t5S (
m1

pm1
ek11t~m1! D S (

m2

pm2
ek21t~m2! D

5rk11t•rk21t22J51. ~13!

Equations~11!–~13! are illustrated in Fig. 5 and represe
our recipe to determine translational invariant correlat
densities~of second order!. In Sec. III B we will also discuss
some variations of this approach.

Following Eqs.~11!–~13!, the second-order spatial corre
lation densitŷ rk1k2

& t for the p model is shown in Fig. 1~b!.
By construction it is translational invariant, i.e
^rk1k2

& t5^rk11Dk,k21Dk& t . It reveals a minimum of

^r01Dk,2J211Dk
(J) & t5

1
2 @11(12a2)# at a line parallel to the

diagonal with a~bin! distance of 2J21; it occurs due to the
energy-conserving anticorrelationrk1 ,k212J21512a2 with

0<k1 ,k2,2J21 of the originalp model and due to the in
dependence of the two truep-model configurations em
ployed for the scheme to restore translational invariance.
scaling behavior of̂rk1k2

& t perpendicular to the diagonal i
not dramatically altered.
y-

r

ity

ce

n

e

This also becomes clear once we investigate the box
ments

Mq~ j !5
1

2 j (k50

2 j 21
1

2q~J2 j ! (
k2J2 j<k1 , . . . ,kq,~k11!2J2 j

rk1 , . . . ,kq

~J! ,

~14!

which represents averages of the correlation den
rk1 , . . . ,kq

(J) 5rk1 , . . . ,kq
of order q over boxes with a scale

dependent bin size of 2J2 j . For q52 they are depicted in
Fig. 6; it only deviates to some minor extent from the perfe
p-model scaling (11a2) j .

For the originalp model the Haar wavelets represent t
perfect building blocks~normal coordinates!; the Haar-
wavelet transformation leads to a perfect diagonalization
the spatial correlation density of second order@see Fig. 3~a!#.
This is not the case for the translationally invariant corre
tion density^rk1k2

& t ; its Haar-wavelet transform is shown i
Fig. 3~b!. Although it is not diagonal anymore, it is sti
quasidiagonal in a very pronounced way: diagonal eleme
of ^r̃k1k2

& t5(k3 ,k4
Wk1k3

Wk2k4
^rk3k4

& t dominate the off-
diagonal elements, which mainly occur in interscale ban
Hence, we conclude that as ‘‘quasi’’ building blocks of th
translationally invariantp model the Haar wavelets still ap
pear to be fairly good approximations to the ‘‘true’’ norm
coordinates.

The scale dependence of the diagonal elements, i.e.,

Wq~ j !5
1

2 j (k50

2 j 21

r̃ ~ jk !q, ~15!

FIG. 5. The auxiliary second-order correlation density matrix
based on two independentp-model correlations. The diagona
blocksrk

18k
28

andrk
1812J,k

2812J are identical to the second-order co

relation density of thep model; see Fig. 1~a!. The two off-diagonal
blocks are decorrelated, so that each element is equal to
rk11t,k21t represents the translated correlation density based
measurements in the observation window of Fig. 4. The translat
ally invariant correlation densitŷrk1k2

& t is obtained by averaging
over shifts along the diagonal from the lower left corner of t
auxiliary matrix to the upper right corner.
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is depicted in the lower part of Fig. 6. Here, even forq52
the scheme to restore translational invariance leads to siz
deviations from the p model’s perfect scaling
r̃ ( jk)q5a2(11a2) j , in particular at the roughest~small j )
and finest~large j ) scales. The reason for this is, once aga
that the wavelet amplitudesẽ jk represent local differences
instead of local averages; hence they are much more se
tive to the nature of the fluctuations occurring in the ‘‘ex
perimental’’ p-model configurations.

B. Modified schemes

In the preceding section we have used two independ
p-model configurations to restore the translational invarian
of the covariance matrixrk1k2

. Mathematically it is also in-

teresting to study the case of periodicp-model configura-
tions; here we could think of a one-dimensionalp model as
represented on a ring, where the beginning and the end
configuration are connected. This scenario occurs, for
ample, in high energy physics when two-dimensional p
ticle density fields are studied in the coordinates (h,F),
where h is the particle’s~pseudo!rapidity and F its azi-
muthal angle with respect to the collision axis. The over
procedure with periodic configurations is the same as w
two independent ones presented in Sec. III A. Only so
minor technicalities have to be changed. First, of course,
secondp-model configuration shown in Fig. 4 has to b

FIG. 6. Dependence of the box moments~squares! and Haar-
wavelet moments~circles! of orderq52 on the resolution scalej
for the originalp model ~dashed lines! and thep model with res-
toration of translational invariance using two independent config
rations~solid lines!. Parameters areJ57 anda50.4.
ble

,

si-

nt
e

f a
x-
r-

ll
h
e
e

identical to the first one. The general relations~9! still hold
with m15m2 andpm1m2

5pm1
, as does Eq.~10! for the first-

order correlation density; i.e., again^rk1
& t51 for all k1. Fig-

ure 5 has to be modified: the two off-diagonal blocks beco
identical to the diagonal blocks, so that now each of the f
submatrices corresponds to one ‘‘true’’p-model correlation
density rk1k2

of second order. As a consequence, Eq.~12!

remains unaltered, whereas Eq.~13! changes into

rk11t,k21t5rk11t,k21t22J ~16!

for 0<k1,2J2t, 2J2t<k2,2J and

rk11t, k21t5rk11t22J,k21t ~17!

for 2J2t<k1,2J, 0<k2,2J2t. Insertion of Eqs.~12!,
~16!, and~17! into Eq. ~11! yields the translational invarian
second-order correlation density^rk1k2

& t obtained with two

identicalp-model configurations; it is depicted in Fig. 1~c!. It
shows an approximate power-law decrease perpendicula
the diagonal until the minimum at̂rDk,2J211Dk& t512a2

with 0<Dk,2J is reached at a bin distance of 2J21 from
the diagonal. For larger bin distances the second-order
relation density increases again; it is reflection symme
around its minimum line due to the periodic continuation
onep-model configuration~equal to two identical configura
tions!.

Many other schemes to restore translational invariance
spatial correlation densities can be constructed. For exam
we could return to the scheme with two~or more! indepen-
dentp-model configurations of equal length and change
size of the observation window~‘‘experimental’’ configura-
tion! to be smaller or larger than onep-model configuration.
In the first case we would arrive at a submatrix of^rk1k2

& t ;

also, in the second casêrk1k2
& t is identical to the result

depicted in Fig. 1~b!, except for the long range bin correla
tions with uk12k2u>2J, where ^rk1k2

& t51 due to the as-

sumed independence of the multiplep-model configurations
of bin length 2J each. From an ‘‘experimental’’ point o
view, this onset of decorrelation in the spatial correlati
functions for large bin distances is a tool for determining t
relevant length scales of the cascade regime.

IV. MULTIPLIER DISTRIBUTIONS

We now investigate the influence of our scheme to rest
translational invariance in the spatial correlation densities
the so-called multiplier distributions. The latter represen
much better opportunity to compare theoretical models w
experimental results than a scaling analysis, as they are m
directly related to the splitting function of the~assumed! un-
derlying cascade process@see Eqs.~3! and~5!#. In Sec. IV A
we work again with thep-model splitting function, whereas
in Sec. IV B we concentrate on a splitting function obtain
empirically by Sreenivasan and Stolovitzky@11#. For further
support of the conclusions to be drawn we also investiga
nonhierarchical breakup process in Sec. IV C.

-
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A. p-model multiplier distributions

We have another close look at the evolution of o
p-model configuration; consult again the beginning of S
II. For an arbitrary cascade stepj→ j 11 the energies evolve
as

E2k
~ j 11!5W6

~ j !Ek
~ j ! ,

E2k11
~ j 11!5W7

~ j !Ek
~ j ! , ~18!

with 0<k,2 j , whereW6
( j ) are called multipliers and take o

two values, i.e.,W6
( j )5(16a)/2. In terms of energy densi

ties, Eq.~18! translates into

e2k
~ j 11!52W6

~ j !ek
~ j ! ,

e2k11
~ j 11!52W7

~ j !ek
~ j ! . ~19!

Given now onep-model configuration, we can identify th
‘‘splitting weight’’ a entering the multiplier according to

e2k
~ j 11!2e2k11

~ j 11!

e2k
~ j 11!1e2k11

~ j 11!
5

W6
~ j !2W7

~ j !

W6
~ j !1W7

~ j !
56a. ~20!

Consequently, we arrive at the ‘‘experimental’’ probabili
density of the splitting parameterq,

p~q!5
1

2
d~q2a!1

1

2
d~q1a!, ~21!

which is exactly equal to the splitting function~5! of the
energy-conservingp model. Again, for the originalp model
the latter depends neither on scalej nor on localizationk.

This is going to change once we consider the sche
~with two independentp-model configurations! depicted in
Fig. 4 to restore translational invariance in the spatial co
lation densities. The probability density for the splitting p
rameter is determined in the following way: we select tw
arbitrary and independentp-model configurationsm1 and
m2, each obtained afterJ cascade steps, join them togeth
and choose an observation window of bin length 2J at posi-
tion t; consult Fig. 4. We then have one ‘‘experimenta
p-model configuration with energy densitie
ek1t(m1m2)[ek1t

(J) (m1m2)[ek
(J)(t,m1m2), where 0<k,2J.

We think of this configuration as ap-model-like configura-
tion as we force it into a spatially dyadic scheme, where
operate with the~backward! energy-conserving smoothings

ek
~ j !~ t,m1m2!5

1

2
@e2k

~ j 11!~ t,m1m2!1e2k11
~ j 11!~ t,m1m2!#

~22!

with 0< j ,J. Then, analogously to Eq.~20!, we determine
the splitting parametersak

( j )(t,m1m2) by

ak
~ j !~ t,m1m2!5

e2k
~ j 11!~ t,m1m2!2e2k11

~ j 11!~ t,m1m2!

e2k
~ j 11!~ t,m1m2!1e2k11

~ j 11!~ t,m1m2!
.

~23!

This holds for onet and one choicem1m2; we then have to
average over all positions 0<t,2J of the observation win-
.

e

-
-

,

e

dow and over all doublep-model configurationsm1m2. This
is continued recursively in the ‘‘backward’’ direction for a
scalesJ. j >0, starting from scalej 5J21 up to the coars-
est scalej 50. In this way we obtain for each scale a ‘‘back
ward’’ or ‘‘experimental’’ splitting function

p~ j !~q!5 (
m1m2

pm1m2

1

2J (
t50

2J21
1

2 j (k50

2 j 21

d„q2ak
~ j !~ t,m1m2!….

~24!

This construction is difficult to perform analytically
therefore we sample overN double p-model configura-
tions m1m2 and replace (m1m2

pm1m2
→1/N( i 51

N with

m1m25m1( i )m2( i ). Furthermore, due to the manyd func-
tions appearing in Eq.~24!, we divide the interval
21<q<1 into 2M cells of length Dq51/M , integrate
p( j )(q) over each such cell, and arrive at the discretiz
probability density function,

p~ j !~qm!5
1

DqEqm

qm1Dq 1

N (
i 51

N
1

2J

3 (
t50

2J21
1

2 j (k50

2 j 21

d@q2ak
~ j !

„t,m1~ i !m2~ i !…#dq,

~25!

with qm5mDq and2M<m,M .
Before we present the result for the discretized probabi

density function we point out one more detail: since the o
servation window reaches over two independent ‘‘true
p-model configurations, the total energy accumulated in
observation window will generally not be equal to the initi
energyE00 of the p model; in other words,e0

(0)(t,m1m2)
Þ1. However, we expect the distributionp(e0

(0)) @where we
set e0

(0)[e0
(0)(t,m1m2) for brevity# to be narrowly peaked

around 1; this behavior is confirmed numerically in Fig.
Observe that the prescription~23! for determining the ‘‘ex-

FIG. 7. Probability densityp(e0
(0)) of the global energy density

e0
(0)[e0

(0)(t,m1m2) in the observation window; the latter depend
on the translation indext of the observation window and the two
independentp-model configurationsm5m1m2. Parameter values
areJ59 anda50.4.
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FIG. 8. Scale-dependent probability densitiesp( j )(q) of the ‘‘experimental’’ splitting parameters of the translation invariantp model
obtained by averaging over shifts of the observation window over two independentp-model configurations. Parameters have been se
J59 anda50.4.
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perimental’’ splitting parametersak
( j )(t,m1m2) is indepen-

dent of the variability ofe0
(0)(t,m1m2) and, thus, no renor

malization is necessary.
Figure 8 illustrates the scale-dependent discretized p

ability density p( j )(q) of Eq. ~25!, where the scheme with
two independentp-model configurations to restore transl
tional invariance has been employed. We usedJ59 cascade
steps anda50.4, corresponding top5(11a)/250.7 of
Ref. @5#. The splitting parameter21<q<1 is related to the
multiplier 0<W<1 by W5(11q)/2; thus, the splitting
functionsp( j )(q) can also be thought of as ‘‘experimenta
multiplier distributions. They are, by construction, symm
ric aroundq50 ~or W51/2, respectively!; hence, we only
show the part forq>0. Contrary to the ‘‘true’’ p model
~without restoration of translational invariance!, where
p( j )(q) has only twod-function-like contributions atq56a
and is independent of the scalej @see Eq.~5!#, the splitting
function now shows scale dependence. For largej values
only a few pronounced peaks occur inp( j )(q), the dominat-
ing ones keeping a slowly decaying memory of the originad
functions atq56a; this is easily understood: the energ
densitiesek

(J)(t,m1m2) of an ‘‘experimental’’ p-model con-
figuration, which consists of two independent realizations
true p-model configurations obtained afterJ cascade steps
b-

-

f

can only take J11 different values at most, namel
(11a)J, (11a)J21(12a), . . . ,(11a)(12a)J21, and
(12a)J. Out of these, only a few different ratios of the for
~23! can be formed, some of them occurring quite rarely. F
the next rougher scalesj ,J, the ek

( j )(t,m1m2) can take on
more thanJ11 values; see Eq.~22!. Hence, for decreasingj
more and more possible values of ratios~23! arise, which
explains that the probability densityp( j )(q) becomes
smoother asj→0. For small j the p( j )(q) even seem to
converge and become approximately scale independent.

In view of this result one question naturally arises: ho
relevant is thep-model splitting function~5! in describing
the energy dissipation process in fully developed turbulen
With our scheme to restore translational invariance in
spatial correlation densities we have designed a ‘‘gedank
experiment on how an experimentalist would deduce
probability density functions for the splitting weightsq,
which is trivially related to the multiplier distributions and
with the presumption of energy conservation, to the splitt
function. Apparently, these experimentalp-model splitting
functions are quite different from the original one~5!. A
dominant peak atq56a is still found on all scales, but also
other q values contribute to a large extent; moreover, t
experimental p-model splitting function becomes scale
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dependent, in contrast to the original one. In other words,
start with a self-similar cascade model with no translatio
invariance, then restore translational invariance, but l
self-similarity. Hence, we should pose the above questio
another way: can we find a splitting function which sta
more or less the same~is stable! as the scheme to restor
translation invariance is applied, and how relevant is it
describing real data in fully developed turbulence? In t
context it is most natural to look on the experimentally d
duced multiplier distributions obtained from real data.

B. Experimental multiplier distributions

Out of one-dimensional time series from fully develop
turbulence, Sreenivasan and Stolovitzky~SRST! deduced
empirically a largely scale-independent multiplier distrib
tion @11#. A suitable parametrization is given by theb dis-
tribution,

pSRST~q!5
1

2

G~2b!

G~b!2 S 11q

2 D b21S 12q

2 D b21

5
1

22b21

G~2b!

G~b!2
~12q2!b21, ~26!
e
l
e

in

s
-

where the single parameterb53.2 is chosen. This represen
a good fit to the empirical multiplier distributions, which a
observed to be scale-independent over a wide range of sc
@11#; only for the very fine scales~large j ) do they deviate
and become wider, whereas for the very rough scales~small
j ) they narrow more towards ad function atq50.

With a new splitting function like Eq.~26! it is straight-
forward to calculate the spatial correlation densities. T
spatial dyadic structure of the cascade model with the e
pirically deduced splitting function~26!, which we hence-
forth refer to as a SRST cascade, is identical to thep-model
process. Hence, Eqs.~2!–~4!, ~6!, and~26! can be employed.
For the construction of the second-order correlation de
ties we can use the recursion relations~7! with the substi-
tutions (11a2)→*21

1 (11q)2pSRST(q)dq and (12a2)
→*21

1 (11q)(12q)pSRST(q)dq; for more technical details
consult @13#. The two-bin correlation densityrk1k2

of the

SRST cascade looks the same as for thep-model case de-
picted in Fig. 1~a!; this also holds for the Haar-wavelet tran
formed correlation densities and the various moments.

The scheme presented in Sec. III A to restore translatio
invariance with two independent cascade configurations n
needs to be modified for one tiny detail: instead of two
dependentp-model configurations we now choose two ind
T-
Parameters
FIG. 9. Scale-dependent probability densitiespSRST
( j ) (q) of the ‘‘experimental’’ splitting parameters of the translation invariant SRS

cascade model obtained by averaging over shifts of the observation window over two independent SRST-cascade configurations.
have been set toJ59 andb53.2. For comparison, the empirical splitting functionpSRST(q) of Eq. ~26! with b53.2 is shown as a solid
curve.
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4272 56MARTIN GREINER, JENS GIESEMANN, AND PETER LIPA
pendent SRST-cascade configurations; the rest stays
same. Again, the translationally invariant correlation dens
^rk1k2

& t for the SRST cascade has the same appearanc
the one shown in Fig. 1~b!, which has been obtained from th
p model; this also holds for the moments and wavelet tra
formed correlation densities considered@see Figs. 3~b! and
6#.

Having in mind the question posed at the end of S
IV A, we now focus on the impact of the scheme to resto
translational invariance on the ‘‘true’’ probability densi
function pSRST(q), which can be interpreted either as a mu
tiplier distribution or as a splitting function. We procee
again according to Eq.~25!. The results are depicted in Fig
9. For a large regime of scales~roughly 2< j <7) the ‘‘ex-
perimental’’pSRST

( j ) (q) more or less collapse with the origina
pSRST(q) ~solid curve!. For the very rough scalesj 50,1 the
distributions become narrower aroundq50, which is also in
accordance with the real experimental observations@11#. For
the finest scale shown, i.e.,j 58, the distribution is more flat
this trend also agrees with the real experimental observat
@11#. It seems that we have already found what we w
looking for: in our simple scheme to restore translatio
invariance in the turbulent cascade models, the experim
tally deduced scale-independent multiplier distribution~26!
reproduces itself over many scales. Two conclusions can
drawn: first of all, the simple restoration scheme with tw
independent cascade configurations appears to be confi
or at least mimics some relevant truth; second and ma
more far-reaching, the simple cascade models, used hith
as toy models to describe fluctuations in the energy diss
tion process in fully developed turbulence, have obtaine
deeper foundation from a phenomenological point of vie
We start with a hierarchical, self-similar cascade model w
the scale-independent splitting functionpSRST(q), restore the
missing translational invariance, and arrive at effective sp
ting functions pSRST

( j ) (q)'pSRST(q), which are quite scale
independent and almost identical to the original one. T
finding confirms and extends the main conclusions of R
@11# in that the empirically deducedb function has the pe-
culiar property of being stable with respect to our scheme
restore translation invariance.

Before we take this statement to the books we should
check counterexamples. Hence, in Sec. IV C we investig
the multiplier distribution obtained from a nonhierarchic
random process.

C. Multiplier distribution of a one-step breakup process

Like thep model the original SRST-cascade model~with-
out restoration of translation invariance! is based on a hier
archical ~dyadic! ordering of the energy densitie
ek

(J)(m)5eJk(m). The energy densitiese2k
(J)(m) and

e2k11
(J) (m) of two neighboring bins both evolve from th

same ‘‘parent’’ energy densityek
(J21) . We now introduce a

random process, which produces configurations with
sameek

(J)(m) values, but with a completely random spat
ordering. In practice this means: we take one arbitr
SRST-cascade configurationm with energy densitiesek

(J)(m)
assigned to bins 0<k,2J; then we randomly permute thek
values to obtain a modified configuration that still h
the
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the same number of spikes and holes but no longer refl
the hierarchical ordering of the cascade process.

After the random permutation of the bin ordering, tw
neighboring bins with labels 2k and 2k11 do not share a
common history anymore; hence, they become decorrela
Except for first order, the spatial correlation densities of t
random process, which can be viewed as a one-step bre
process~BP!, differ drastically from those of the SRST ca
cade. Again we pick the second order for an illustration. T
diagonal elementsrk1k1

(J) (BP) remain the same as for th

SRST cascade:

rk15k2

~J! ~BP!5S E
21

1

~11q!2pSRST~q!dqD J

. ~27!

The off-diagonal elements are all equal and easy to calcu
once we make use of energy conservation:

15^E2&

5K S 1

2J (
k150

2J21

ek1

~J!D S 1

2J (
k250

2J21

ek2

~J!D L
5

1

22J (
k1 ,k250

2J21

rk1k2

~J! ~BP!

5
1

22J
@2Jrk15k2

~J! ~BP!12J~2J21!rk1Þk2

~J! ~BP!#;

from here it follows that

rk1Þk2

~J! ~BP!5
1

2J21
@2J2rk15k2

~J! ~BP!#. ~28!

The two-bin correlation densityrk1k2

(J) (BP) is shown in Fig.

10. As expected it is completely different from Fig. 1~a!,
where rk1k2

of the p model has been depicted, the latt
being the same as for the SRST cascade. This obvious

FIG. 10. Two-bin correlation densityrk1k2
(BP) for the spatially

randomized SRST-cascade process withJ56 and the SRST-
splitting function~26! with b53.2.
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FIG. 11. Scale-dependent multiplier distributionpBP
( j )(q) out of the restoration scheme for translational invariance with two independ

spatially randomized SRST-cascade configurations. Parameters have been set toJ59 andb53.2. For comparison, the empirical splittin
function pSRST(q) of Eq. ~26! with b53.2 is shown as a solid curve.
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ference still holds once we use our scheme with two in
pendent random configurations to restore translational inv
ance.

In terms of spatial correlation densities the SRST casc
can be clearly distinguished from the corresponding rand
ized process. The same is also true for the multiplier dis
butions pBP

( j )(q) of Eq. ~25! once we apply the scheme t
restore translational invariance with two independent, n
spatially randomized SRST-cascade configurations. The
sult is illustrated in Fig. 11. No approximate scale invarian
and no convergence to the multiplier distributionpSRST(q) of
Eq. ~26! ~solid line! can be claimed. This outcome furthe
underlines the statements given at the end of Sec. IV B.

V. CONCLUSIONS

We have presented a simple scheme to restore tran
tional invariance in hierarchical multiplicative cascade mo
els: an ‘‘experimental’’ configuration is constructed fro
two independent cascade configurations of equal length,
latter being attached to the former. By randomly shifting t
observation window around, the knowledge about the spa
position of individual cascade configurations is lost and, c
sequently, the spatial correlation functions become invar
-
ri-
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w
e-
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la-
-
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e
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nt

under translations. Due to the random shifting inherent in
restoration scheme, the self-similar structure of the hierar
cal cascade models is lost in the first place. This effect is b
seen in the multiplier distributions for the textbook casca
model, i.e., thep model: after translational invariance in th
correlation functions is restored, the multiplier distributio
become scale-dependent and differ substantially from
original one. Strikingly, this is not the case once the emp
cally deducedb function of Ref.@11# is taken as the splitting
function for the cascade model; the ‘‘experimental’’ mul
plier distributions obtained after the restoration of trans
tional invariance then stay more or less scale-invariant
equal to the original one. Moreover, the deviations fro
scale invariance at the very rough and the very fine scales
qualitatively the same as seen in experiment. This dem
strates that in connection with discrete multiplicative casc
models our simple scheme for the restoration of translatio
invariance in the spatial correlation functions seems to
consistent with experimental data for the energy dissipa
field in fully developed turbulence.

Some further questions in connection with our scheme
restore translational invariance can be posed: are there o
splitting functions that are more or less left invariant und
this scheme, or is the experimentally deduced splitting fu
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tion a kind of attractor for various different input splittin
functions? What about various conditioned multiplier dist
butions? Work in this direction is currently in progress.

Note that the wavelet transform leads to a quasidiago
ization of the spatial second-order correlation function
the multiplicative cascade models made translational inv
ant. Thus wavelets approximately represent the true nor
coordinates for these processes. It would be interesting to
if this finding also holds once experimental data are direc
processed or other phenomenological models are inv
gated.
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